Email
Пароль
?
Войти Регистрация


ВСН 185-85 Расчет на прочность обвязочных трубопроводов

Название (рус.) ВСН 185-85 Расчет на прочность обвязочных трубопроводов
Кем принят Не определен
Тип документа ВСН (Ведомственные Строительные Нормы)
Рег. номер 185-85
Дата принятия 01.01.1970
Статус Действующий
Скачать этот документ могут только зарегистрированные пользователи в формате MS Word




Добавить свое объявление
Загрузка...
 



Емкости

Ведомственные строительные нормы

Расчет на прочность
обвязочных трубопроводов

ВСН 185-85
Миннефтегазстрой

МИНИСТЕРСТВО СТРОИТЕЛЬСТВА ПРЕДПРИЯТИЙ
НЕФТЯНОЙ И ГАЗОВОЙ ПРОМЫШЛЕННОСТИ

ВСЕСОЮЗНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ
ПО СТРОИТЕЛЬСТВУ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ

Москва 1986

РАЗРАБОТАНЫ И ВНЕСЕНЫ Всесоюзным научно-исследовательским институтом по строительству магистральных трубопроводов (ВНИИСТ) -

Р. М. Шакиров, докт. техн. наук, директор института

И. Д. Красулин, канд. техн. наук, зам. директора

Б. И. Завойчииский, канд. физ.-мат. наук, научный руководитель и ответственный исполнитель

при участии Государственного института по проектированию магистральных трубопроводов специального строительства (Гипроспецгаз) -

М. Ф. Трубачев, директор института

О. И. Рогаткин, начальник отдела

Л. Д. Никифоров, главный специалист

ПОДГОТОВЛЕНЫ К

УТВЕРЖДЕНИЮ Главным техническим управлением Миннефтегазстроя (ГТУ) -

М. В. Машков - начальник отдела

Управлением проектно-изыскательских работ Мингазпрома (УПИР) -

М. С. Федоров, начальник отдела

С введением в действие "Расчета на прочность обвязочных трубопроводов"  утрачивает силу "Инструкция по расчету обвязочных трубопроводов", 1968 г.

СОГЛАСОВАНЫ Государственным комитетом СССР по делам строительства (Госстрой СССР) -

Б. Я. Говоровский - начальник Управления Главтехнормирования

Главным техническим управлением Миннефтегазстроя -

О. М. Иванцов - начальник ГТУ

Управлением проектно-изыскательских работ Мингазпрома -

В. Д. Батозский, начальник УПИР

Техническим управлением Мингазпрома (ТУ) -

А. Д. Седых - начальник ТУ

Министерство строительства (Предприятий нефтяной и газовой промышленности (Миннефтегазстрой)

Ведомственные строительные нормы

ВСН 185-85
Миннефтегазстрой

Расчет на прочность обвязочных трубопроводов

Взамен Инструкции по расчету обвязочных трубопроводов

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Настоящие нормы распространяются на обвязочные трубопровода компрессорных станций магистральных газопроводов (КС) условным диаметром до 1420 мм (включительно) с избыточным давлением среды не выше 10 МПа при использовании центробежных или поршневых компрессоров.

Настоящие нормы не распространяются на обвязочные трубопроводы КС, вооружаемые в сейсмических районах, в зонах распространения многолетней мерзлоты или просадочных грунтов, на подрабатываемых территориях.

1.2. Обвязочный трубопровод КС состоит из следующих конструкций:

всасывающий трубопровод, соединяющий аппараты очистки газа и нагнетатели (ГПА);

нагнетательный трубопровод, соединяющий ГПА и аппараты охлаждения газа;

строительные конструкции опор, в том числе и разгрузочные;

строительные конструкции фундаментов под ГПА.

1.3. Расчет обвязочных трубопроводов на прочность проводят в следующей последовательности: определяют геометрические параметры обвязочных трубопроводов (в том числе толщин стенок труб и соединительных деталей); выбирают расчетную схему, соответствующую заданному конструктивному решению трубопроводов; определяют напряженно-деформированное состояние конструкций под действием эксплуатационных нагрузок и воздействий в течение нормативного срока их эксплуатации; оценивают статическую и длительную прочность элементов трубопроводов; оценивают циклическую прочность элементов трубопроводов при динамическом нагружении.

Внесены отделом прочности и надежности конструкций магистральных трубопроводов ВНИИСТа

Утверждены Миннефтегазстроем

13 ноября 1985 г.,

Мингазпромом

5 ноября 1985 г.

Срок введения в действие

1 мая 1986 г.

1.4. Расчет на прочность всасывающего и нагнетательного трубопроводов выполняется в следующем порядке:

в сечениях трубопровода находят компоненты усилий и моментов как в пространственной стержневой системе под действием расчетных нагрузок и воздействий;

определяют напряженное состояние элементов под действием этой системы усилий и моментов;

по теории предельных процессов простого нагружения оценивают статическую прочность, долговечность и динамическую прочность элементов, находящихся под действием системы усилий и моментов. Если при этом оказывается, что в некоторых элементах напряженное состояние не удовлетворяет требованиям прочности настоящих норм, следует изменить конструктивную схему таким образом, чтобы напряжения в данном элементе уменьшились до требуемого уровня.

Если будет установлено, что усилия и моменты, действующие на нагнетатели, превосходят значения, нормируемые заводом-изготовителем ГПА, конструктивную схему также следует изменить таким образом, чтобы уменьшить эти усилия и моменты до требуемого уровня.

1.5. Основные буквенные обозначения, принятые в тексте и формулах настоящих норм, приведены в приложении 1.

2. ОПРЕДЕЛЕНИЕ ТОЛЩИН СТЕНОК ТРУБ И СОЕДИНИТЕЛЬНЫХ ДЕТАЛЕЙ.

Значения расчетной толщины стенки труб ? следует определять по формуле (12) СНиП 2.05.06-85 при следующих значениях коэффициентов: m = 0,6; n = 1,1.

Значения коэффициента К1 для отечественных и импортных труб выбирают в соответствии с указаниями "Инструкции по применению стальных труб в газовой и нефтяной промышленности", М., ВНИИСТ, 1983.

Геометрические размеры соединительных деталей следует определять по формулам (59) и (60) СНиП 2.05.06-85. При этом следует руководствоваться указаниями ГОСТ 17374-83 - ГОСТ 17380-83 и рекомендациями ОСТ 102-54-81 - ОСТ 102-57-81, ОСТ 102-58-81 - ОСТ 102-59-81, ОСТ 102-60-81 - ОСТ 102-62-81 "Детали магистральных трубопроводов стальные приварные на Ру до 10,0 МПа (100 кгс/см2)", ОСТ 102-39-85 - ОСТ 102-45-85 "Детали трубопроводов бесшовные приварные на Ру до 100 кгс/см2" (до 9,81 МПа) из низколегированных сталей".

3. ОПРЕДЕЛЕНИЕ НАПРЯЖЕННОГО СОСТОЯНИЯ ОБВЯЗОЧНЫХ ТРУБОПРОВОДОВ ПРИ ЭКСПЛУАТАЦИОННОМ НАГРУЖЕНИИ 

3.1. Для оценки конструктивной прочности обвязочных трубопроводов следует сначала определить напряженное состояние основных элементов трубопроводов при эксплуатационном нагружении. Оно характеризуется максимальными значениями компонент напряжений и их изменчивостью в процессе эксплуатации.

Провести затем оценку опасности этого напряженного состояния в течение срока службы газопровода, т.е. оценку прочности элементов при статическом и повторно-статическом эксплуатационном нагружении.

3.2. Напряженное состояние основных элементов обвязочного трубопровода определяют в два этапа. Главная цель первого этапа состоит в определении значений компонент усилия  и момента  в основных элементах трубопровода от воздействия расчетных нагрузок*) при их основных сочетаниях с учетом остановок КС в наиболее неблагоприятных температурных условиях. На втором этапе находят напряженное состояние отдельных элементов по ранее найденным значениям О и М.

*) Расчетные нагрузки равны нормативным, умноженным на соответствующие коэффициенты перегрузки.

На первом этапе допускается рассматривать обвязочный трубопровод как статически неопределимую пространственную стержневую систему переменной жесткости, учитывающую ответвления, подземную и надземную части, промежуточные опоры и нагнетатели, находящиеся на фундаментах. Эпюры  и  должны отражать действие на эту систему внутреннего давления, неравномерного температурного поля, распределенной и сосредоточенной весовых и 1 ветровых нагрузок, отпора грунта и сил трения на опорах.

При выборе расчетных нагрузок и воздействий следует руководствоваться указаниями СНиП 2.05.06-85 "Магистральные трубопроводы. Нормы проектирования", СНиП 11-6-74 "Нагрузки и воздействия" и приложений 7 и 8.

Определение  и  в основных сечениях системы следует производить методами строительной механики статически неопределимых нелинейных систем (см. приложение 2).

3.3. Изгибную жесткость гнутых и сварных отводов следует находить по формуле

EJ* = ЕJ / Кp ?, (1)

где коэффициенты Кр и ? следует определять по приложению 3. При этом допускается использование методики (см. [9] приложения 2) при соответствующем обосновании.

В качестве расчетной модели тройникового соединения следует рассматривать модель, состоящую из четырех элементов.

В просвете тройника размещена абсолютно жесткая ^-образная вставка, в которой длина стойки равна внешнему радиусу магистральной части, а длины двух плеч равны внешнему радиусу отвода соединения. Примыкающие к вставке три упругих элемента имеют изгибную жесткость, равную жесткости трубы соответствующей толщины. Для сварных тройников с усиливающими накладками изгибная жесткость упругих элементов определяется как жесткость сечения этого элемента в зоне примыкания к абсолютно жесткой вставке.

В расчетной схеме взаимодействие каждого элемента подземной части обвязочного трубопровода с грунтом следует моделировать установкой равномерно распределенной "нелинейной пространственной пружины", жесткость которой характеризуется тремя коэффициентами C1, C2, C3 для трех взаимно перпендикулярных направлений. Первое направление совпадает с направлением продольной оси элемента, второе - является горизонтальным и перпендикулярно первому, третье - перпендикулярно плоскости, образованной первым и вторым направлениями.

Коэффициент жесткости пружины для первого направления C1 определяется трением между поверхностью изоляции и грунтом. Величина C1 зависит от глубины заложения элемента и от физико-механических свойств грунта (его вида, консистенции, крупности и пористости, способности сопротивляться предельным сдвиговым деформациям).

Коэффициент жесткости пружины для второго направления C2 отражает отпор грунта при боковом вдавливания цилиндрической поверхности. Коэффициент C2 зависит от величины бокового перемещения элемента и определяется способностью грунта сопротивляться нормальному вдавливанию штампа с цилиндрической поверхностью и учитывает физико-механические свойства засыпки траншеи и основного грунта.

Коэффициент жесткости пружины для третьего направления C3 учитывает отпор грунта при вертикальном вдавливании цилиндрической поверхности (движение вниз) и сопротивление вышележащего над элементом слоя засыпки вертикальному перемещению цилиндрической поверхности (движение вверх).

Значения коэффициентов жесткости следует определять либо экспериментально, либо теоретически при решении задачи о распределении напряжений в грунтовом полупространстве, механические свойства которого учитывают физико-механические свойства засыпки и грунта и его предельную способность сопротивления сдвиговому и нормальному деформированию.

3.4. Номинальные значения компонент напряжений, соответствующие усилию , моменту  i = x, y, z (рис. 1) и внутреннему давлению, вычисленных согласно пп. 3.1 и 3.2, находятся по следующим зависимостям:

; (2)

, , , (i = 1, 2); (3)

, ,, (i = 1, 2); (4)

, , (i = 1, 2); (5)

, , (i = 1, 2); (6)

, (i = 1, 2) ; (7)

Рис 1. Нагружение тройникового соединения:

I - стержневая модель; 1 - 1, 2 - 2, 3 - 3 - упругие элементы; 1 - 2 - 3 - абсолютно жесткая вставка; II - компоненты моментов и сил по торцам

, ;

(0 < K < 2). (8)

Примечание. Для отводов в формулах (2) - (8) следует использовать вместо ?* величину ?.

3.5. На втором этапе расчета находят истинное напряженное состояние элементов трубопроводов в результате решения соответствующей задачи теории упругости или пластичности (см. [l6, 17] приложения 2), либо определяют номинальное напряженное состояние, компоненты которого умножаются на соответствующие значения коэффициентов K? и Kt, характеризующие наиболее напряженные области элементов.

Истинное распределение напряжений в отдельных элементах трубопровода дает решение соответствующей задачи теории упругости или пластичности с граничными условиями, учитывающими ранее найденные значения  и . Решение может быть найдено аналитически, численно с помощью метода конечных элементов, реализованного на ЭВМ (программа ЛИРА [3, 5], программа ПЛАНК [7] (см. приложение 2), или экспериментально.

При использовании соответствующих алгоритмов для определения напряженно-деформированного состояния элементов трубопроводов, реализованных на ЗиЛ, следует проводить оценку точности полученных значений напряжений.

Компоненты номинальных напряжений находятся по соотношениям п. 3.4. Эффективный коэффициент концентрации напряжений K? элементов обвязочных трубопроводов следует определять решением задачи теории малых упруго-пластических деформаций [16, 17] для этих элементов под действием расчетной системы нагрузок, усилий и моментов (аналитически или численно), экспериментально с натурными деталями или их моделями, подвергнутыми нагружению системой вышеуказанных нагрузок, усилий и моментов вплоть до разрушения. При отсутствии данных по K? допускается выбирать их значения по соотношениям приложения 5.

Теоретический коэффициент концентрации напряжений Кt для элементов обвязочных трубопроводов определяется: решением задачи о напряженном состоянии элемента под действием расчетной системы нагрузок, усилий и моментов методами теории упругости (аналитически или численно), экспериментальными методами исследования напряженно-деформированного состояния элементов в упругой области.

При отсутствии данных по Кt их значения допускается выбирать по соотношениям и графикам приложений 4 и 5.

4. ОЦЕНКА СТАТИЧЕСКОЙ ПРОЧНОСТИ ЭЛЕМЕНТОВ ОБВЯЗОЧНЫХ ТРУБОПРОВОДОВ КС

Условие, при котором недопустимые пластические деформации отсутствуют в элементах подземных и надземных частей обвязочных трубопроводов, выполняется, если

, (9)

где коэффициент К2 находится по табл. 10 СНиП 2.05.06-85, коэффициент КН - по табл. 11 СНиП 2.05.06-85.

Для обеспечения статической прочности элементов трубопроводов требование

(10)

должно быть удовлетворено, где коэффициент К1* задается в табл. 1, коэффициент КН - в табл. 11 СНиП 2.05.06-85.

Статическая прочность тройниковых соединений проверяется по соотношениям (43) приложения 4.

Эквивалентное напряжение  (j = 1, 2) находится по зависимостям:

при оценке работоспособности основного металла, и сварных стыковых соединений 

; (11)

при оценке работоспособности отводов (коленьев) и тройниковых соединений

(j = 1, 2). (12)

Компоненты напряженного состояния ?gk(1) (g, k = 1, 2, 3) определяются следующими зависимостями:

для основного металла труб

;  или ;

 или  (i = 1, 2); (13)

для поперечного сварного стыкового соединения

; ; ;  (i = 1, 2); (14)

для продольного сварного стыкового соединения

; ;  (i = 1, 2), (15)

где коэффициент Кt определяется по (54) приложения 5;

для отводов

; ;  (i = 1, 2), (16)

где

? = ??k / rc2, Kt,1 = 1,9?-2/3, Kt,2 = 0,9?-2/3.

Допускается определение значений Kt,1 и Kt,2 по методике [9] приложения 2:

для тройниковых соединений

 (17)

 (18)

 (19)

при ДM / Д0 < 1,3 дополнительно

 (20)

 (i = 1, 2). (21)

Таблица 1

Характеристика труб и соединительных деталей

Значение коэффициента К1*

Прямошовные трубы

Из листовой стали контролируемой прокатки 09Г2ФБ, Г70, 10Г%, - 10Г2ФБ, ЮГ2ФБ-У,

Экспандированные трубы из нормализованной стали 1171С-У

Электросварные горячеправленные трубы из стали 09Г2С, 10Г2С1

Из горячекатаных рулонных сталей по ГОСТ 19282-73 

Трубы при 100 %-ном ультразвуковом (УЗ) контроле и контролируемой прокатке по ТУ 100-80, ТУ 100-80 (Нс), ТУ 100-80 (нкк), ТУ 100-80 (с), ТУ 100-80 (кс), ТУ 40/48/56-79, ТУ 20/28/40/48-79, ТУ 40/48/56-80, ТУ 20/28/40/48/56-79, ТУ 28/40/48-78, ТУ 20/28/40/48-79, Т 40/48/56-79

1,25

Прямошовные трубы

Из стали 17Г1С-У по ТУ 14-3-1138-82

Из стали 13Г2АФ по ТУ 14-3-1138-82

Соединительные детали магистральных трубопроводов, изготовленные по ОСТ 102-54-81, ОСТ 102-62-81

1,35

Компоненты напряженного состояния ?gk(2) (g, k = 1, 2, 3) находятся по следующим соотношениям:

 (22)

 (23)

 (24)

где ;

при ДM / Д0 < 1,3 дополнительно

 (25)

t01х

-9

-9

-8

-9

-5

-4

-8

-5

-5

-4

-4

-1

0

0

0

-4

-12

t0х

-9

-9

-8

-9

-5

-4

-8

-5

-5

-4

-4

-1

0

0

0

-4

-10

?tтн

48

48

52

48

44

48

52

44

44

48

48

40

44

44

44

48

54

?I

20

20

20

20

20

20

20

20

20

20

15

15

15

15

15

15

10

tх

-41

-41

-41

-41

-36

-36

-41

-36

-36

-36

-31

-26

-26

-26

-26

-31

-36

?tхн

-50

-50

-54

-50

-46

-50

-54

-46

-46

-50

-45

-37

-41

-41

-41

-45

-48

?tтнзд

33

33

37

33

29

33

37

29

29

33

33

25

29

29

29

33

39

?tхнзд

-4

-4

-8

-4

-5

-8

-8

-5

-5

-9

-8

-6

-10

-10

-10

-9

-7

?tтп

19

20

19

20

16

15

20

17

16

16

17

14

14

13

15

18

25

?tхп

-9

-9

-13

-9

-10

-14

-13

-10

-10

-14

-14

-11

-15

-15

-15

-14

-12

На рис. 20 приведена разбивка вышеуказанных территорий на зоны, которые определены как пересечение областей равных температур tVII, tI, ?I, tтоп в соответствии с картами 5 - 7, СНиП II-6-74 и карты СССР с температурой почвы под естественным покровом на глубине 160 см для сентября по "Климатическому атласу СССР".

Табл. 5 построена при минимальных значениях температур tхон = -10 °C; tmin.зд = 5 °С.

Величины температур tгр.min взяты из "Справочника по климату СССР" и округлялись в меньшую сторону до ближайшего значения, кратного пяти.

Приложение 8 

Рекомендуемое

О ВЫБОРЕ РАСЧЕТНОЙ СХЕМЫ ОБВЯЗОЧНОГО ТРУБОПРОВОДА

1. Расчетная схема - это конструктивная*) схема трубопровода, освобожденная от несущественных с точки зрения строительной механики особенностей. Для одной и той же конструктивной схемы можно выбрать несколько расчетных схем**) в зависимости от того, какой участок трубопровода необходимо более детально исследовать и каковы возможности используемой программы.

*) Конструктивная схема представляет собой условно изображение реальной конструкции трубопровода.

**) Применение расчетной схемы является необходимостью, поскольку полный учет свойств реального сооружения затруднен.

Использование линейной теории стержневых систем делает внешне похожими расчетную и конструктивную схемы трубопровода. На конструктивной схеме условно показываются опоры и различные крепления, арматура, а также даются все размеры труб, отводов и тройников.

В спецификации должны быть указаны диаметры и толщины труб, отводов и тройников, характеристики сталей, данные по грунтам на площадках компрессорных станций, различные режимы работы агрегатов всей компрессорной станции. Технологических режимов, как правило, задается несколько. Часто задаются различные варианты креплений при подходе труб к агрегатам.

Так как система обвязочных трубопроводов многократно статически неопределима, время счета зависит от правильного выбора основной геометрически неизменяемой и статически определимой системы. Так, для программ СТАРТ выбирают основную систему независимо от нумерации точек и разницы в жесткостях труб (диаметров и толщины); при этом учитывается и тип опор трубопроводов, и мертвые опоры с учетом варьирования основной системы. Программа позволяет: сократить время решения задачи на ЭВМ, повысить точность решения, проверить устойчивость полученного решения. Расчетную схему обвязочного трубопровода необходимо расчленить на конечные элементы с помощью расчетных узлов.

Узлы соединения конечных элементов назначаются в местах опирания трубопровода, установки тройниковых соединений и разгрузочных опор, стыковки прямолинейных и криволинейных участков трубопровода, а также в зонах резкого изменения физико-механических характеристик грунтов, характеристик поперечного сечения трубы, технологических параметров транспортируемого продукте, прочностных характеристик металла трубы.

Прямолинейные подземные участки трубопровода разбивают на отдельные конечные элементы, длины которых должны уменьшаться при приближении к отводам и местам разветвления трубопровода, т.е. к тройниковым соединениям. Можно рекомендовать принимать минимальную длину элемента в месте примыкания к отводу и к тройнику порядка 1 - 2 диаметров трубы с последующим увеличением длины элементов постепенно до 10 - 14 диаметров, на длине прямолинейного участка - порядка 40 - 60 диаметров трубы.

Частоту разбивки прямолинейных подземных участков на конечные элементы увеличивают при прочих разных условиях в местах приложения максимального по абсолютной величине температурного перепада и внутреннего давления газа. Инженерная оценка необходимого количества узлов разбивки может быть проведена по аналогии с заменой равномерно распределенной нагрузки на балку сосредоточенными силами.

Отводы заменяются криволинейными конечными элементами, результаты расчета которых выдаются в средних и крайних точках. Допускается замена отвода ломаной линией эквивалентной длины. При опирании трубопровода (начиная с диаметра 700 мм) и его арматуры на фундаментные конструкции необходимо учитывать эксцентриситет расположения площадки скольжения относительно оси трубы.

2. Физико-механические характеристики грунта определяются на основе инженерных изысканий площадки строительства КС с учетом прогнозирования изменений этих характеристик в процессе строительства и эксплуатации и способа производства работ.

Допускается производить предварительные расчеты с использованием нормативных значений характеристик грунта, приведенных в СНиП "Основания зданий и сооружений. Нормы проектирования".

3. В расчетной схеме оперируют понятием "точка" (закрепление в точке, поворот в точке и т.п.).

Конструктивно создать закрепление или наоборот свободу перемещения с определенными свойствами в одной точке невозможно. Нередко для обеспечения требуемых свойств приходится ставить крепления на некотором расстоянии друг от друга и т.д.

Следует обратить внимание, есть ли на конструктивной схеме близко расположенные крепления, с расстоянием между ними порядка 1 - 2 диаметров трубы и менее. Иногда расстояние может быть и большим, но свойства оказываются линейно зависимыми от длины. Например, несколько пружинных опор на длинном вертикальном стояке по существу являются одной опорой с распределенными свойствами по длине стояка.

В подобных случаях необходимо выявить функциональное назначение принятой конструкции и схему ее работы свести в одну точку, т.е. две близко расположенные опоры, имеющие одинаковые реакции, заменить одной. Речь идет не о формальной, а об эквивалентной с точки зрения строительной механики замене. Принятые схемы работы креплений и компенсаторов должны вобрать в себя все существенные свойства реальной конструкции.

Например, для предохранения арматуры от воздействия изгибных моментов необходима установка двух опор с хомутами, устанавливаемыми по обеим сторонам арматуры. По отношению к трубе арматура - бесконечно жесткий элемент. Поэтому такая конструкция равнозначна закреплению одной точки на оси трубопровода от линейных смещений и поворота.

На конструктивной схеме в этом случае будут показаны две опоры, а в расчетной схеме здесь должна быть принята одна опора, препятствующая линейным и угловым перемещениям закрепляемой точки С.

Для предохранения штуцера агрегата от нагрузки, обусловленной температурным расширением трубопровода, в непосредственной близости от него часто ставят упор.

С расчетной точки зрения такое решение эквивалентно жесткому закреплению точки а. Разгрузка штуцера агрегата от силы  является как бы внутренней спецификой конструкции крепления в точке а, влияющей на схему работы трубопровода в целом.

Попытка решить задачу с двумя закреплениями - в точке а и в точке b при длине ab, соизмеримой с диаметром трубопровода, может привести к неточным результатам, ибо система уравнений оказывается плохо обусловленной. Функциональное назначаете креплений (опор) определяется схемой работы крепления, т.е. каким перемещениям трубопровода оно препятствует, а каким - нет. Например, в программе СТАРТ все крепления делятся на стандартные и нестандартные. К стандартным опорам относятся мертвая, направляющая и скользящая опоры. Мертвая опора препятствует любым перемещениям трубопровода. Реакция опоры имеет шесть компонентов: три момента вокруг осей X, У, и три силы вдоль этих осей (см. рис. 1).

Направляющая опора препятствует перемещениям трубопровода ниже и поперек оси трубы, причем ось трубы обязательно лежит в горизонтальной плоскости (иначе опора будет нестандартной). При перемещении трубопровода вверх опора выключается из работы.

Реакция опоры имеет три составляющие: вертикальную, горизонтальную силы (поперек оси трубы) и силу трения (вдоль оси трубы). Скользящая опора препятствует перемещению трубопровода вниз, а при перемещении трубопровода вверх - выключается из работы.

Реакция опоры имеет две составляющие: вертикальную силу (реакция от веса) и сил трения в горизонтальной плоскости (которая представляется в виде двух составляющих по оси Х и по оси У).

Предусматривается податливость крепления как стандартных, так и нестандартных. Податливость крепления - упругая характеристика крепления. Различают податливость линейную и угловую.

Под линейной податливостью понимается перемещение (мм), вызываемое силой в 1 кг, под угловой - податливостью угла поворота в радианах от момента в 1 кгм.

4. На рис. 21, а, б, в, г показаны этапы построения расчетных схем деталей фундаментов под разгрузочные опоры трубопровода.

На этих рисунках пунктирной линией изображена упругая часть, а сплошной линией (элементы i - j) - абсолютно жесткая часть элементов деталей фундаментов. Разгрузочные опоры под трубопровод выбираются аналогичным образом, т.е. выделяется упругая и абсолютно жесткая часть элементов конструкции (под упругими понимаются элементы, имеющие конечные значения жесткостных характеристик).

Задание граничных условий конструкции тесно связано с возможностями использования различных сочетаний внешних связей, накладываемых на узлы расчетной схемы. При рациональном построении расчетной схемы возможно сокращение задания исходной информации путем уменьшения рассчитываемой части конструкции. Это достигается применением связей, которые описывают прямые и косые плоскости симметрии, цилиндрические и сферические шарниры, жесткие и подвижные заделки.

На рис. 21, а, б, в, г введены следующие обозначения: 1 - деталь фундамента под разгрузочную опору; 2 - ось трубопровода, являющаяся одновременно осью патрубка нагнетателя ГПА; 3 - продольная ось установки ГПА; 4 - точка пересечения осей разгрузочной опоры и трубопровода; 5 - узел разгрузочной опоры, отражающий взаимодействие трубопровода обвязки и фундамента под разгрузочную опору; 6 -абсолютно жесткая вставка; 7 - упругая вставка, характеристики F , I, W, Wp которой равны фактическим геометрическим характеристикам моделируемого сечения.

Расчетные схемы обвязочных трубопроводов для ГПА ГТН-25, Ц-16 и СТД-4000 представлены на рис. 22 а, б, в (сплошными точками обозначены расчетные узловые точки, сплошной линией - упругие элементы).

Общая схема включает расчетные схемы промежуточных и разгрузочных опор, крановых блоков, надземной и подземной частей всасывающих и нагнетательных трубопроводов, строительных конструкций фундаментов под ГПА.

Рис. 21. Построение расчетной схемы фундаментов

Рис. 21. Расчетная схема обвязочного трубопровода:

а - ГПА ГТН-25; б - ГПА Ц-16; в - ГПА СТД-4000

СОДЕРЖАНИЕ