Email
Пароль
?
Войти Регистрация


Пособие по проектированию градирен

Название (рус.) Пособие по проектированию градирен
Кем принят ВНИИ ВОДГЕО Госстроя СССР
Тип документа Пособие к СНиП
Рег. номер 2.04.02-84
Дата принятия 20.03.1985
Статус Действующий
Скачать этот документ могут только зарегистрированные пользователи





 





Емкости

ВСЕСОЮЗНЫЙ ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ
НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ВОДОСНАБЖЕНИЯ
КАНАЛИЗАЦИИ, ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ
И ИНЖЕНЕРНОЙ ГИДРОГЕОЛОГИИ
(ВНИИ ВОДГЕО) ГОССТРОЯ СССР

ПОСОБИЕ
по проектированию градирен

(к СНиП 2.04.02-84)

Утверждено
приказом ВНИИ ВОДГЕО Госстроя СССР
от 20 марта 1985 г. № 27

Москва
Центральный институт типового проектирования
1989

Приведены материалы для проектирования вентиляторных, башенных, открытых и радиаторных градирен, методы технологического расчета охлаждающей способности, рекомендации по проектированию строительных конструкций, а также оценке шума вентиляторных градирен.

Для инженерно-технических работников проектных, строительных и эксплуатационных организаций.

Пособие разработано ВНИИ ВОДГЕО Госстроя СССР (руководитель и ответственный исполнитель д-р техн. наук, проф. В. А. Гладков - разд. 1, 2, пп. 7.1, 7.2, 7.15 - 7.29, канд. техн. наук Ю. И. Арефьев - разд. 2, пп. 7.3 - 7.14, канд. техн. наук В. С. Пономаренко - разд. 2) с участием Союзводоканалпроекта Госстроя СССР (инженеры В. А. Трубников и Л. Г. Стулова - разд. 2, 4, 5); ВНИИГ им. Б. Е. Веденеева Минэнерго СССР (кандидаты техн. наук Е. А. Сухов и Р. Е. Гельфанд - разд. 3); Ленинградского отделения Атомтеплоэлектропроекта Минэнерго СССР (инженеры В. А. Морозов и Ф. А. Шершнев - разд. 3, пп. 6.1 - 6.19, 6.103 - 6.117); НИИЖБ Госстроя СССР (канд. техн. наук М. М. Капкин - пп. 6.20 - 6.45); Промстройпроекта Госстроя СССР (инж. И. Л. Генешта - пп. 6.75 - 6.101); Проектстальконструкции Госстроя СССР (инж. Г. И. Дубовик - пп. 6.46 - 6.74), Сантехпроекта Госстроя СССР (инж. Р. Г. Котляр - пп. 7.3 - 7.14) и Института общей и коммунальной гигиены им. А. Н. Сысина АМН СССР (канд. мед. наук Л. X. Цыгановская - пп. 7.15 - 7.29).

При пользовании Пособием следует учитывать утвержденные изменения строительных норм и правил и государственных стандартов, публикуемые в журнале «Бюллетень строительной техники», «Сборнике изменений к строительным нормам и правилам» Госстроя СССР и информационном указателе «Государственные стандарты СССР» Госстандарта СССР.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Градирня представляет собой сооружение для охлаждения воды в оборотных системах водоснабжения.

1.2. Применение охлажденной воды в энергетике и промышленности связано с конденсацией отработавшего пара после расширения его в паровых двигателях, с конденсацией и охлаждением газообразного и жидкого продукта химического производства, с охлаждением оборудования в целях предохранения его от быстрого разрушения под влиянием высоких температур (например, цилиндров компрессоров, кладки производственных печей) и т.п.

В зависимости от назначения охлажденной воды требования, предъявляемые к температуре этой воды, могут сильно различаться. Эти требования диктуются условиями производственных процессов, экономичностью и надежностью работы установок. Они определяются, как правило, технологией производства.

1.3. По способу передачи тепла атмосферному воздуху можно классифицировать градирни на:

испарительные, в которых передача тепла от воды воздуху осуществляется в основном за счет испарения;

радиаторные, или сухие, в которых передача тепла от воды воздуху осуществляется через стенку радиаторов за счет теплопроводности и конвекции;

смешанные, в которых используется передача тепла за счет испарения, теплопроводности и конвекции.

1.4. Теоретическим пределом охлаждения воды в испарительных градирнях является температура атмосферного воздуха по смоченному термометру, которая может быть ниже температуры по сухому термометру на несколько градусов.

Теоретическим пределом охлаждения воды в радиаторных градирнях является температура атмосферного воздуха по сухому термометру.

1.5. Испарительные градирни обеспечивают более глубокое охлаждение воды по сравнению с радиаторными и могут быть выполнены из дешевых и менее дефицитных материалов.

1.6. Радиаторные градирни получили незначительное применение из-за малой глубины охлаждения воды и низких коэффициентов теплоотдачи поверхности контакта с воздухом. Вследствие этого поверхность контакта таких градирен возрастает в несколько десятков раз по сравнению с испарительными. Кроме этого, из-за малой теплоемкости воздуха для радиаторных градирен требуется значительно большее количество воздуха, чем для испарительных. Радиаторные градирни обладают рядом недостатков при эксплуатации в условиях отрицательных температур наружного воздуха. Однако радиаторные градирни рекомендуют к применению, когда можно или требуется обеспечить отсутствие контакта охлаждаемой воды с воздухом или в районах с дефицитом воды.

1.7. В комбинированных радиаторно-испарительных градирнях, так же как и в сухих, охлаждение воды происходит через стенки радиаторов, орошаемые снаружи водой. Отдача тепла водой, протекающей через радиаторы к воздуху, осуществляется за счет теплопроводности через стенки и испарения орошающей воды. Указанные градирни получили меньшее распространение, чем испарительные и радиаторные из-за неудобств при эксплуатации.

1.8. По способу создания тяги воздуха градирни разделяются на:

вентиляторные, через которые воздух прокачивается нагнетательными или отсасывающими вентиляторами;

башенные, в которых тяга воздуха создается высокой вытяжной башней;

открытые, или атмосферные, в которых для протока воздуха через них используются естественные токи воздуха - ветер и отчасти естественная конвекция.

1.9. В зависимости от конструкции оросительного устройства и способа, которым достигается увеличение поверхности соприкосновения воды с воздухом, градирни подразделяются на пленочные, капельные и брызгальные.

Каждый из указанных видов градирен может иметь разнообразные конструкции отдельных элементов оросительного устройства, отличаться их размерами, расстояниями между ними и может быть выполнен из различных материалов.

1.10. Башенные градирни выполняются отдельно стоящими, круглыми или многоугольными в плане, вентиляторные - секционными или отдельно стоящими, в плане могут иметь форму квадрата, прямоугольника, многоугольника или круга.

1.11. На вентиляторные градирни допускается удельная тепловая нагрузка 335 - 419 МДж/ (м2 × ч) [80 - 100 тыс. ккал/ (м2 × ч)] и выше, на башенные, в зависимости от высоты башни, - удельная нагрузка 251 - 419 МДж/ (м2 × ч) [60 - 100 тыс. ккал/ (м2 × ч)]. На атмосферные градирни допускается удельная тепловая нагрузка 29,3 - 62,6 МДж/ (м2 × ч) [7 - 15 тыс. ккал/ (м2 × ч)]. Зависимость охладительного эффекта атмосферных градирен от силы и направления ветра ограничивает их применение.

1.12. Удельная гидравлическая нагрузка на градирни определяется технологическими расчетами, приведенными в разд. 2. Она зависит от расчетных параметров атмосферного воздуха при заданном проценте обеспеченности, требуемых перепадов температуры воды, расчетных температур охлажденной воды и выбранного вида и конструкции градирен.

Ориентировочно для градирен, проектируемых для средней полосы нашей страны, удельная гидравлическая нагрузка принимается, м3/ (м2 × ч), при оросителе:

пленочном                              8 - 12

капельном                              6 - 10

брызгальном                          5 - 6

Для открытых атмосферных градирен расчетная удельная гидравлическая нагрузка обычно недолжна превышать 3 - 5 м3/ (м2 × ч).

1.13. Выбор типа градирен следует производить по технологическим расчетам с учетом заданных в проекте расходов воды и количества тепла, отнимаемого от продуктов, аппаратов и охлаждаемого оборудования, температур охлаждаемой воды и требований к устойчивости охладительного эффекта, метеорологических параметров, инженерно-геологических и гидрологических условий площадки строительства градирни, условий размещения охладителя на площадке предприятия, характера застройки окружающей территории и транспортных путей, химического состава добавочной и оборотной воды и санитарно-гигиенических требований к нему, технико-экономических показателей процесса строительства этих сооружений.

1.14. При наличии в оборотной воде взвесей в сочетании с маслами и нефтепродуктами, образующих на элементах оросителя трудноудаляемые отложения, рекомендуется применять градирни брызгального типа. Такого же типа градирни рекомендуется применять при возможности выделения из оборотной воды карбоната кальция в виде накипи на элементах оросителя в больших количествах, угрожающих обрушению оросителя. Возможность выделения карбоната кальция устанавливается по аналогии с действующими соседними системами оборотного водоснабжения предприятий, использующими ту же добавочную воду и работающими в сходных гидротермических режимах.

1.15. По условиям предотвращения разрушения конструкционных материалов (бетона и древесины) температура воды, поступающей на градирни, не должна, как правило, превышать 60 °С. При температуре поступающей воды выше 60 °С следует применять защитные покрытия конструкций или термоустойчивые материалы.

1.16. По условиям надежности, удобства и экономичности эксплуатации рекомендуется от 2 до 12 секций или градирен в одном оборотном цикле водоснабжения. Если по технологическим расчетам число секций или градирен составляет более 12 или менее 2, следует выбрать другой типоразмер градирен.

1.17. При расположении градирен на площадке предприятия следует обеспечивать беспрепятственный доступ атмосферного воздуха к ним и благоприятные условия для отвода увлажненного воздуха, выбрасываемого из градирен. По этим соображениям не рекомендуется группу градирен располагать в окружении высоких зданий или на близком расстоянии от них. Расстояние должно быть свыше полуторной высоты зданий. При этом необходимо учитывать розу ветров и направление зимних ветров для предупреждения увлажнения и обмерзания зданий и сооружений возле градирен.

Расстояния от соседних зданий, до градирен и между градирнями следует принимать по СНиП II-89-80.

1.18. Расчетные атмосферные параметры для проектирования строительной части градирен необходимо принимать по СНиП 2.01.01-82.

2. ВЕНТИЛЯТОРНЫЕ ГРАДИРНИ

ОБЩАЯ ЧАСТЬ

2.1. Вентиляторные градирни надлежит применять в системах оборотного водоснабжения, требующих устойчивого и глубокого охлаждения воды, при высоких удельных гидравлических и тепловых нагрузках, при необходимости сокращения объема строительных работ, маневренного регулирования температуры охлажденной воды средствами автоматизации.

2.2. Схемы некоторых видов вентиляторных градирен, проекты которых разработаны Союзводоканалпроектом при участии ВНИИ ВОДГЕО, приведены на черт. 1 - 5.

2.3. Технологическая схема вентиляторной градирни включает в себя следующие основные элементы: оболочку (корпус), состоящую из каркаса, обшитого листовым материалом, водораспределительное устройство, ороситель, водоуловитель, водосборный бассейн и вентиляторную установку.

2.4. Для вентиляторов марок ВГ 25, ВГ 50, ВГ 70 и ВГ 104 разработаны типовые проекты градирен площадью 25, 64, 144, 192 и 400 м2. Для вентиляторов с рабочим колесом диаметром 10 и 18 м, подачей соответственно 2,7 и 10 млн. м3/ч воздуха и площадью 380 и 1200 м2 разработаны индивидуальные проекты.

ВЕНТИЛЯТОРНЫЕ УСТАНОВКИ

2.5. В градирнях для создания искусственной тяги применяются серийно изготовляемые осевые вентиляторы для градирен марки ВГ и осевые вентиляторы общепромышленного назначения марки 06-300. Технические характеристики вентиляторов приведены в табл. 1 и на черт. 6 - 11.

В марке вентилятора для градирен первая цифра означает номер модификации, цифры после букв ВГ - условный диаметр рабочего колеса в дециметрах. Например, вентилятор марки 3ВГ 25 - это вентилятор для градирен модификации номер 3 с рабочим колесом условным диаметром 25 дм.

Черт. 1. Схема вентиляторной противоточной градирни

1 - диффузор; 2 - вентилятор; 3 - водоуловитель; 4 - водораспределительная система; 5 - оросительное устройство; 6 - воздухонаправляющий козырек; 7 - воздуховходные окна; 8 - воздухораспределительное пространство; 9 - переливной водовод; 10 - грязевой водовод; 11 - водосборный бассейн; 12 - ветровая перегородка; 13 - отводящий водовод; 14 - подводящий водовод

Черт. 2. Схема поперечноточной градирни с отсасыванием воздуха вентилятором

1 - диффузор; 2 - вентилятор; 3 - подводящий водовод; 4 - водораспределительная система; 5 - водоуловитель; 6 - оросительное устройство; 7 - жалюзи; 8 - водосборный бассейн; 9 - отводящий водовод; 10 - переливной водовод

Черт. 3. Схема одновентиляторной градирни площадью 400 м2 с вентилятором марки 1ВГ 104

1 - диффузор; 2 - вентилятор; 3 - водоуловитель; 4 - водораспределительная система; 5 - оросительное устройство; 6 - ветровая перегородка; 7 - водосборный бассейн; 8 - подводящий водовод; 9 - отводящий водовод

Черт. 4. Схема вентиляторной градирни, располагаемой на зданиях

1 - водоуловитель; 2 - водораспределительная система; 3 - оросительное устройство; 4 - вентилятор

Черт. 5. Схема поперечноточной градирни с нагнетанием воздуха вентилятором

1 - водораспределительная система; 2 - водоуловитель; 3 - оросительное устройство; 4 - водосборный поддон; 5 - вентилятор

Таблица 1

Техническая характеристика вентилятора

Марка вентилятора

06-300 № 8

06-300 № 12,5

1ВГ 25

3ВГ 25

2ВГ 50

2ВГ 70

1ВГ 104

06-300 № 8

Номинальная подача воздуха, тыс. м3

15

45

120

156

500

1100

2700

23

Статический напор, Па (кгс/м2)

-

-

137 (14)

-

147 (15)

157 (16)

167 (17)

-

Полное давление, Па (кгс/м2)

98 (10)

157 (16)

-

137 (14)

-

-

-

235 (24)

КПД вентилятора

0,78

0,78

-

0,63

-

-

-

0,78

Частота вращения, об/мин

930

730

365

365

178

178

110

1410

Число лопастей, шт.

3

3

3

6

3

3

6

3

Угол установки лопастей, град

-

-

16

22

16

15

13

-

Диаметр рабочего колеса, м

0,8

1,25

2,5

2,5

5,0

7,0

10,4

0,8

Диаметр втулки, м

0,32

0,5

0,75

-

1,5

2,1

3,64

0,32

Марка электродвигателя

AOЛ2-21-6

A02-42-8

BACO 10-19-16

BACO 10-19-16

BACO 14-16-32

BACO 15-23-34

BACB 17-40-52

АОЛ2-32-4

Мощность, кВт

0,8

3,0

11,0

11,0

30,0

75,0

200,0

3,0

Напряжение, В

380

380

380

380

380

380

6000

380

Частота тока, Гц

50,0

50,0

50,0

50,0

50,0

50,0

50,0

50,0

КПД электродвигателя

-

-

0,885

0,885

0,83

0,875

-

-

Габариты вентилятора, м:

 

 

 

 

 

 

 

 

диаметр

0,86

1,32

3,00

3,00

6,00

8,40

10,45

0,86

высота

0,98

1,51

1,87

1,87

3,74

5,15

13,5

0,98

Масса вентилятора, кг

-

-

1200

-

4960

9300

16250

-

То же, без электродвигателя, кг

51

157

 

-

-

-

-

51

Черт. 6. Аэродинамическая характеристика вентилятора марки 1ВГ 25

Зависимости а - мощности N, б - КПД h; в - напора Н от подачи воздуха вентилятором G"в.

2.6. Срок службы вентиляторов устанавливается не менее десяти лет. Ресурс работы до первого капитального ремонта должен составлять не менее 20000 ч.

2.7. На черт. 12 приведена обобщенная схема вентиляторной установки марок ВГ 25, ВГ 50 и ВГ 70 и ее габариты.

Рабочее колесо, состоящее из ступицы с закрепленными на ней лопастями и втулки ротора, насажено непосредственно на вал тихоходного электродвигателя, прикреплено к нему болтами и вращается в полости среднего патрубка (обечайки), расположенного соосно с ним.

Лопасти вентиляторов марок 1ВГ 25, 2ВГ 50 и 2ВГ 70 - стальные марки ЦЗ-04. Лопасти вентилятора марки 3ВГ 25 - алюминиевые марки К-121а. Лопасти вентилятора марки 1ВГ 104 - стеклопластиковые марки К-100.

Диффузор состоит из отдельных щитов, коллектор и средний патрубок - из отдельных секторов.

Черт. 7. Аэродинамическая характеристика вентилятора марки 3ВГ 25

Зависимости а - мощности N; б - КПД h; в - напора Н от подачи воздуха вентилятором G"в

Привод вентиляторов - тихоходный электродвигатель вертикального исполнения.

Последняя буква в марке двигателя указывает вид его охлаждения: например, О - воздушное, В - водяное. Привод крепится на специальной раме, относящейся к строительной части градирен.

Подачу воздуха вентилятором можно регулировать изменением угла наклона лопастей.

Черт. 8. Аэродинамическая характеристика вентилятора марки 2ВГ 50

Зависимости а - мощности N, б - напора Н от подачи воздуха вентилятором G"в

Черт. 9. Аэродинамическая характеристика вентилятора марки 2ВГ 70

Зависимости а - мощности N, б - напора Н от подачи воздуха вентилятором G"в

2.8. В марке вентилятора общепромышленного назначения номер указывает величину условного диаметра рабочего колеса вентилятора в дециметрах. Например, вентилятор общепромышленного назначения марки 06-300 № 12,5 имеет условный диаметр рабочего колеса 12,5 дм. Конструктивные размеры осевых вентиляторов общепромышленного назначения марок 06-300 № 4, 06-300 № 5, 06-300 № 6,3; 06-300 № 8; 06-300 № 10 и 06-300 № 12,5 приведены на черт. 13 и в табл. 2.

Черт. 10. Аэродинамическая характеристика вентилятора марки ВГ 104

Зависимости а - мощности N, б - напора Н от подачи воздуха вентилятором G"в

Лопасти вентиляторов марки 06-300 - стальные, привод - асинхронный электродвигатель горизонтального исполнения. Вентиляторы марок 06-300 № 4, 06-300 № 5, 06-300 № 6,3 изготавливаются без станин, вентиляторы марок 06-300 № 8, 06-300 № 10 и 06-300 № 12,5 - со станинами. В типовых проектах градирен применяются вентиляторы марок 06-300 № 8 и 06-300 № 12,5. В индивидуальных проектах могут применяться и другие марки вентиляторов.

Черт. 11. Аэродинамические характеристики осевых вентиляторов марки 06-300 общепромышленного назначения № 4; 5; 6,3; 8; 10 и 12,5

Черт. 12. Вентиляторная установка марок ВГ

1 - диффузор; 2 - корпус; 3 - коллектор; 4 - привод; 5 - рабочее колесо

Марка вентилятора

Размеры, мм

D1

D2

D3

Н1

Н2

H3

ВГ 25

3000

3000

2520

1870

1000

480

ВГ 50

6000

5910

5040

3720

2200

700

ВГ 70

8400

8400

7050

5150

3000

1000

Черт. 13. Осевые вентиляторы марки 06-300 общепромышленного назначения № 4; 5; 6,3; 8; 10 и 12,5

Таблица 2

Номер вентилятора

Диаметр рабочего колеса вентилятора, мм

Размеры, мм (см. черт. 13)

D

D1

D2

D3

A

Б

Г

Е

Ж

К

H

4

400

160

403

430

460

-

-

-

200

-

-

-

5

500

200

503

530

560

-

-

-

250

-

-

-

6,3

630

252

633

650

690

-

-

-

315

-

-

-

8

800

320

805

830

860

750

250

550

320

32,5

806

315

10

1000

400

1006

1035

1060

900

330

670

400

32,0

960

394

12,5

1250

500

1258

1285

1320

1100

400

850

500

47,0

1160

494

ВОДОРАСПРЕДЕЛИТЕЛЬНЫЕ СИСТЕМЫ

2.9. В вентиляторных градирнях следует применять преимущественно низконапорные трубчатые системы распределения воды с разбрызгивающими соплами. К этим системам предъявляются требования: возможно равномернее распределять охлаждаемую воду по оросителю и обеспечивать расчетную подачу воды в процессе эксплуатации градирен. Схемы и конструктивные размеры пластмассовых сопел - тангенциального, ударного с зубчатым отражателем и раструбного - приведены на черт. 14 и в табл. 3, их гидравлические характеристики - в табл. 4. В башенных градирнях применяются, в основном, ударные сопла с чашечными отражателями, схема и гидравлическая характеристика которых приведены на черт. 15.

Таблица 3

Условный диаметр сопла: входного и выходного отверстий, Dу, мм

Размеры, мм (см. черт. 14)

d0

dк

lк

Rвх

a

b

20 ´ 12

12

26

40

8

18

10

32 ´ 16

16

32

60

9,5

32

15

32 ´ 22

22

45

70

12,5

31

20

Черт. 14. Разбрызгивающие пластмассовые сопла

а - тангенциальное; б - ударное с зубчатым отражателем; в - раструбное

Таблица 4

hc, м

qс, м3

К¢н.р

Rф, м

hф, м

Направление выходного отверстия и расстояние от сопла до оросителя, м

вниз
1

вниз
0,5

вверх
0,25

вниз
1

вверх
0,25

вверх
0,25

Тангенциальное сопло, Dy = 20 ´ 12 мм, m = 0,53

1,5

1,15

0,79

0,70

0,50

0,55

1,7

1,0

2,0

1,28

0,82

0,72

0,44

0,65

2,0

1,2

3,0

1,46

0,88

0,79

0,35

0,75

2,5

1,8

4,0

1,65

0,94

0,83

0,30

0,80

2,9

2,5

Тангенциальное сопло, Dу = 32 ´ 16 мм, m = 0,51

1,5

2,70

0,74

0,72

0,79

0,45

1,8

1,2

2,0

3,06

0,75

0,80

0,62

0,50

2,1

1,4

3,0

3,50

0,94

0,89

0,50

0,62

2,8

1,9

4,0

3,80

0,94

0,76

0,40

0,70

3,1

2,6

Тангенциальное сопло, Dy = 32 ´ 22 мм, m = 0,50

1,5

3,90

0,67

0,57

0,74

0,75

1,9

1,1

2,0

4,25

0,70

0,65

0,65

0,82

2,1

1,3

3,0

5,26

0,72

0,65

0,55

0,90

2,6

1,8

4,0

6,00

0,73

0,68

0,50

0,95

3,0

2,5

Ударное сопло с отражателем, Dy = 32 мм, m = 0,91

1,0

7,50

-

-

0,80

-

1,9

0,30

1,5

9,76

-

-

0,75

-

2,5

0,45

2,0

11,25

-

-

0,66

-

2,9

0,55

Раструбное сопло, Dy = 50 мм, m = 0,94

0,6

5,69

5,5

0,60

0,90

0,5

1,0

0,4

1,0

7,35

7,0

0,70

0,80

0,65

1,5

0,55

1,2

8,05

7,75

0,80

0,75

0,7

1,6

0,6

Черт. 15. Разбрызгивающее пластмассовое сопло с чашечным отражателем и график зависимости расхода воды qс от напора Нс перед соплом диаметрами входного отверстия 0,024, 0,026 и 0,028 м

2.10. Коэффициент неравномерности распределения воды в факелах разбрызгивания группы сопел рекомендуется определять по формуле

,                                                (1)

где Мс - безразмерный коэффициент, равный 0,6 при работе сопел с факелами, направленными вверх, и 0,5 - направленными вниз;

fс - площадь ячейки в сетке размещения сопел в плане, м2.

Чем ниже величины коэффициентов К′н.р и Кн.р, тем равномернее распределяется вода в факелах разбрызгивания.

2.11. Диаметр капель в факелах разбрызгивания сопел приближенно можно вычислить по зависимости

,                                                                     (2)

где dэ - средний «эквивалентный» диаметр капель (отношение суммы объема капель к сумме их поверхности), мм;

Сс - безразмерный коэффициент, равный 38 для тангенциального сопла, Dy = 20 ´ 12 мм, 48 - для тангенциального сопла, Dy = 32 ´ 16 мм, и сопла с зубчатым отражателем, Dy = 32 мм.

Средний диаметр капель меньше dэ примерно на 40 %.

2.12. Сопла при проектировании и привязке градирен необходимо подбирать с учетом их пропускной способности, размеров факела разбрызгивания, незасоряемости примесями оборотной воды и диаметра капель.

В секционных и отдельно стоящих градирнях с капельным, пленочным и брызгальным оросителями рекомендуется применять сопла тангенциальные и с зубчатым отражателем. Тангенциальные сопла устанавливаются, как правило, выходными отверстиями вниз, сопла с зубчатым отражателем могут устанавливаться выходными отверстиями, направленными вверх или вниз. Предпочтительнее принимать верхнее направление выходного отверстия.

При установке сопел с направлением выходного отверстия вниз расстояние от сопел до верха капельного или пленочного оросителя следует принимать 0,8 - 1 м, при направлении выходного отверстия вверх расстояние от верха факела до низа водоуловителя должно быть не менее 0,5 м, а расстояние от водораспределительных труб до верха капельного или пленочного оросителя рекомендуется принимать не менее 0,5 м.

В градирнях, в которых возможно засорение тангенциальных сопел и сопел с зубчатым отражателем примесями оборотной воды, рекомендуется устанавливать раструбные сопла. Выходное отверстие этих сопел может быть направлено вверх или вниз, предпочтительнее верхнее, так как оно обеспечивает более равномерное распределение воды по оросителю. Раструбные сопла могут применяться вместо тангенциальных сопел и сопел с зубчатым отражателем в градирнях площадью 144 м2 и более.

Во избежание попадания воды на наружную обшивку градирни крайние ряды сопел целесообразно устанавливать под углом к вертикали 30 - 45° внутрь градирни. Такая установка особенно рекомендуется при напорах воды более 3 м перед соплами, т.е. при большом радиусе их факелов разбрызгивания.

2.13. В брызгальных градирнях рекомендуется устанавливать сопла на двух и более ярусах по высоте. При этом в верхнем ярусе выходное отверстие сопел следует направлять вниз, в нижних - вверх. Расстояние между ярусами сопел может быть 1 - 1,5 м и более.

2.14. Пластмассовые сопла изготовляются, как правило, из полиэтилена низкого давления высокой плотности марок 20908-040 и 21008-075 по ГОСТ 16338-77.

2.15. Диаметр магистральных труб водораспределительной системы подбирается из расчета скорости движения воды в них не более 1,5 м/с. В распределительных трубах скорость движения воды может быть увеличена до 2 м/с.

ОРОСИТЕЛЬНЫЕ УСТРОЙСТВА

2.16. В вентиляторных градирнях применяются три типа оросительных устройств: пленочные, капельные и брызгальные. На черт. 16 - 18 представлены пленочные и капельные оросители. Основным типом является пленочный ороситель, обеспечивающий наибольшую поверхность соприкосновения для тепломассообмена воды с воздухом при меньших по сравнению с другими типами аэродинамических сопротивлениях и соответственно наиболее высокий эффект охлаждения воды. При наличии в воде загрязнений, исключающих применение пленочного оросителя из-за зарастания зазоров между щитами следует применять градирни с капельным или брызгальным оросителем.

Черт. 16. Схемы деревянных пленочных оросителей

Черт. 17. Схемы деревянных капельных (I - III) и капельно-пленочного (IV) оросителей

Черт. 18. Схемы пленочных пластмассовых (I - V) и асбестоцементного (VI) оросителей

2.17. Ороситель брызгального типа представляет собой обычно воздухо-направляющие щиты, которые одновременно несколько увеличивают поверхность соприкосновения воды с воздухом и время контакта этих сред. Расстояние между щитами составляет 500 мм. В отдельных случаях при необходимости увеличения эффективности охлаждения это расстояние уменьшают до 100 - 200 мм и тогда брызгальный ороситель работает как разреженный пленочный.

2.18. При разработке проектов новых и реконструкции существующих градирен выбор типа оросителя в каждом конкретном случае производится на основании технико-экономических расчетов с учетом требований технологии производства, тепловой и аэродинамической характеристик оросителя, наличия материалов для его изготовления и минимальной материалоемкости конструкции, а также качества оборотной воды.

2.19. Одним из возможных путей экономии материалов при устройстве пленочных оросителей без существенного ухудшения охладительного эффекта является установка элементов таких оросителей в 2 - 3 яруса с разрывом между ними не более 1 м (см. черт. 18, V).

2.20. Для удобства установки оросительных устройств в градирню отдельные элементы их монтируются в блоки. Размеры блоков в плане не должны превышать 1 - 1,5 м2, а высота их принимается по конструктивным соображениям с учетом общей высоты оросительного устройства. Блоки могут быть закреплены на подвесках или установлены на опорных балках. Многоярусные оросители из полимерных материалов целесообразно крепить на подвесках.

ВОДОУЛОВИТЕЛИ

2.21. К водоуловителям предъявляются требования максимально возможного снижения выноса капель из градирни с потоком воздуха при минимальном аэродинамическом сопротивлении. Этим требованиям удовлетворяют конструкции водоуловителей, схемы которых изображены на черт. 19. Технологические характеристики водоуловителей приведены в табл. 5.

2.22. Водоуловители рекомендуется устанавливать на расстоянии около 2,0 м над водораспределительными системами, обеспечивающем доступ к водоразбрызгивающим соплам. При необходимости снижения общей высоты градирни этого условия можно не придерживаться, однако расстояние от водоуловителей до водораспределительных систем в этом случае должно быть не менее 0,5 м.

Черт. 19. Схемы водоуловителей

Таблица 5

Номер позиции на черт. 19

Водоуловитель

Угол наклона планок, a, град

Расстояние между планками, d, мм

Коэффициент сопротивления, zву

Унос капельной влаги, % расхода охлаждающей воды

I

Деревянный двухрядный с толщиной планок d = 8 мм при скорости воздуха w = 2,0 м/с

60

70

3,7

0,1 - 0,2

I

То же, с толщиной планок d = 10 мм при w = 2,5 м/с

60

70

4,7

0,1 - 0,2

I

То же

60

40

6,5

0,05

II

Пластмассовый уголковый конструкции ВНИИГ при w = 2,0 м/с

45

35

3,5

0,05

III

Асбестоцементный с криволинейным очертанием лопаток при w

Внимание! Это не полная версия документа. Полная версия доступна для скачивания.


Спонсоры раздела: